Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(1): e0226544, 2020.
Article in English | MEDLINE | ID: mdl-31923278

ABSTRACT

Ocean acidification is an emerging consequence of anthropogenic carbon dioxide emissions. The full extent of the biological impacts are currently not entirely defined. However, it is expected that invertebrate species that rely on the mineral calcium carbonate will be directly affected. Despite the limited understanding of the full extent of potential impacts and responses there is a need to identify potential pathways for human societies to be affected by ocean acidification. Research on these social implications is a small but developing field. This research contributes to this field by using an impact assessment framework, informed by a biophysical model of future species distributions, to investigate potential impacts facing Atlantic Canadian society from potential changes in shellfish fisheries driven by ocean acidification and climate change. New Brunswick and Nova Scotia are expected to see declines in resource accessibility but are relatively socially insulated from these changes. Conversely, Prince Edward Island, along with Newfoundland and Labrador are more socially vulnerable to potential losses in fisheries, but are expected to experience relatively minor net changes in access.


Subject(s)
Atlantic Ocean , Climate Change , Fisheries , Seawater/chemistry , Socioeconomic Factors , Biophysical Phenomena , Canada , Hydrogen-Ion Concentration , Models, Theoretical
2.
Environ Sci Technol ; 49(9): 5628-36, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25844925

ABSTRACT

In salmonid aquaculture, a variety of technologies have been deployed that attempt to limit a range of environmental impacts associated with net-pen culture. One such technology employs a floating, solid-walled enclosure as the primary culture environment, providing greater potential control over negative interactions with surroundings waters while limiting energy use required for water circulation, thermo-regulation and supplemental oxygen provision. Here, we utilize life cycle assessment to model contributions to a suite of global-scale resource depletion and environmental concerns (including global warming potential, acidification potential, marine eutrophication potential, cumulative energy use, and biotic resource use) of such a technology deployed commercially to rear Chinook salmon in coastal British Columbia, Canada. Results indicate that at full grow-out, feed provisioning and on-site energy use dominate contributions across four of five impact categories assessed. For example, per tonne of salmon harvested, feed contributed approximately 72% to global warming potential, 72% to acidification potential, and accounted for 100% of biotic resource use. However, for both feed and on-site energy use, impacts are heavily influenced by specific sources of inputs; therefore efforts to improve the environmental performance of this technology should focus on reducing these in favor of less impactful alternatives.


Subject(s)
Aquaculture/methods , Containment of Biohazards , Salmon/growth & development , Animals , British Columbia , Uncertainty
3.
Proc Natl Acad Sci U S A ; 111(37): 13257-63, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25136111

ABSTRACT

Aquaculture is the fastest growing food sector and continues to expand alongside terrestrial crop and livestock production. Using portfolio theory as a conceptual framework, we explore how current interconnections between the aquaculture, crop, livestock, and fisheries sectors act as an impediment to, or an opportunity for, enhanced resilience in the global food system given increased resource scarcity and climate change. Aquaculture can potentially enhance resilience through improved resource use efficiencies and increased diversification of farmed species, locales of production, and feeding strategies. However, aquaculture's reliance on terrestrial crops and wild fish for feeds, its dependence on freshwater and land for culture sites, and its broad array of environmental impacts diminishes its ability to add resilience. Feeds for livestock and farmed fish that are fed rely largely on the same crops, although the fraction destined for aquaculture is presently small (∼4%). As demand for high-value fed aquaculture products grows, competition for these crops will also rise, as will the demand for wild fish as feed inputs. Many of these crops and forage fish are also consumed directly by humans and provide essential nutrition for low-income households. Their rising use in aquafeeds has the potential to increase price levels and volatility, worsening food insecurity among the most vulnerable populations. Although the diversification of global food production systems that includes aquaculture offers promise for enhanced resilience, such promise will not be realized if government policies fail to provide adequate incentives for resource efficiency, equity, and environmental protection.


Subject(s)
Aquaculture , Food Supply , Internationality , Agriculture , Animals , Crops, Agricultural/growth & development , Food/economics , Humans
4.
Environ Sci Technol ; 46(9): 4958-65, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22480265

ABSTRACT

Concern has been voiced in recent years regarding the environmental implications of the Antarctic krill fishery. Attention has focused primarily on ecological concerns, whereas other environmental aspects, including potentially globally problematic emissions and material and energy demands, have not been examined in detail. Here we apply life cycle assessment to measure the contributions of krill meal, oil, and omega-3 capsules to global warming, ozone depletion, acidification, eutrophication, energy use, and biotic resource use. Supply chains of one krill fishing and processing company, Aker BioMarine of Norway, were assessed. Impacts of krill products were found to be driven primarily by the combustion of fossil fuels onboard the fishing vessel and a transport/resupply vessel. Approximately 190 L of fuel are burned per tonne of raw krill landed, markedly higher than fuel inputs to reduction fisheries targeting other species. In contrast, the biotic resource use associated with extracting krill is relatively low compared to that of other reduction fisheries. Results of this study provide insight into the broader environmental implications of the krill fishery, comparisons between products derived from krill and other species targeted for reduction, opportunities for improving the fishery's performance, and a baseline against which to measure future performance.


Subject(s)
Conservation of Energy Resources , Euphausiacea , Fisheries , Food Handling , Animals , Antarctic Regions , Seafood
5.
Ambio ; 34(8): 635-8, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16521840

ABSTRACT

Over the course of the 20th century, fossil fuels became the dominant energy input to most of the world's fisheries. Although various analyses have quantified fuel inputs to individual fisheries, to date, no attempt has been made to quantify the global scale and to map the distribution of fuel consumed by fisheries. By integrating data representing more than 250 fisheries from around the world with spatially resolved catch statistics for 2000, we calculate that globally, fisheries burned almost 50 billion L of fuel in the process of landing just over 80 million t of marine fish and invertebrates for an average rate of 620 L t(-1). Consequently, fisheries account for about 1.2% of global oil consumption, an amount equivalent to that burned by the Netherlands, the 18th-ranked oil consuming country globally, and directly emit more than 130 million t of CO2 into the atmosphere. From an efficiency perspective, the energy content of the fuel burned by global fisheries is 12.5 times greater than the edible-protein energy content of the resulting catch.


Subject(s)
Conservation of Natural Resources , Fisheries , Fossil Fuels , Air Pollutants , Animals , Cost-Benefit Analysis , Dietary Proteins , Fisheries/economics , Fishes , Invertebrates , Ships
SELECTION OF CITATIONS
SEARCH DETAIL
...